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Quantum entanglement is an enigmatic and powerful property that has attracted
much attention, since it provides new means of communication, such as quantum
cryptography, quantum teleportation and superdense coding, and quantum computa-
tion. Therefore, the measure of entanglement of composite systems becomes crucial.
For pure bipartite states the von Neumann entropy is a good measure and it is easily
calculated; however, to quantify the entanglement of mixed states is a harder task.
Some measures have been proposed, among them one based on relative entropy. This
measure needs a minimization procedure. In this paper, we present an algorithm to
calculate the quantum entanglement measure based on relative entropy, in which the
required minimization procedure is done using a genetic algorithm. The main advan-
tage of using a genetic algorithm is it is easier to implement than gradient methods
are when the number of parameters is very large.c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In the last decade quantum information theory has attracted a lot of attention due to the
possibility it provides for new ways of communicating without classical counterparts, such
as quantum cryptography [1] and quantum teleportation [2]. At the heart of this theory is
quantum entanglement, that is, the ability of composite quantum systems to show nonlocal
correlation [2]. When the composite state is a pure state,σ , the entanglement,E, can be
quantified using the von Neumann entropy of one of the individual parts of the system,
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E ≡ S= −Tr(ρa logρa) = −Tr(ρb logρb), whereρa = Trbσ and ρb = Traσ , with a
andb being the individual parts. This is a unique measure for bipartite pure-state entangle-
ment, in the sense that any other measure based on asymptotic distillation and dilution of
pure-state entanglement agrees on pure states with the von Neumann entropy [3]. However,
when the composite state is a mixed state,8, that is, a statistical mixture of pure states,
the work needed to quantify the entanglement is harder, involving now a set of quantum
entanglement measures proposed elsewhere [2, 4–7]. The first two measures proposed were
the entanglement of formation,EF , and the distillable entanglement,ED. The first one is
defined as the least-expected entanglement of any ensemble of pure states that implements
the mixed states whose entanglement we want to measure,EF (8) = min

∑
i pi S(|σi 〉〈σi |),

such that8 =∑i pi |σi 〉〈σi |. The second one is the maximal number of maximally entan-
gled states that can be obtained, from a mixed entangled state, by using a purification
protocol that involves local operations and classical communication between the parties,
and its value depends on the protocol of purification used. Any other entanglement measure,
obeying certain natural axioms (two of them in the asymptotic regime), must be confined
betweenEF and ED, ED ≤ E ≤ EF [8]. Among them, one of the most direct and most
used is the measure based on relative entropy. In order to calculate this measure, we need
to search for the minimal relative entropy between the entangled state whose entanglement
we want to quantify and all other possible disentangled states [5]. This minimal value can
be found by evaluating numerically the gradient of the relative entropy and moving in the
opposite direction of the gradient [6]. However, since the number of parameters is very
large, this may not be an easy task, albeit, in the problem in question, there is only a global
minimum [6]. In this paper, we use the computational technique named genetic algorithm
to find the disentangled state that minimizes the relative entropy. This technique has been
used successfully in several kinds of problems where the search for a minimal or a maximal
value is necessary, even when local minima are present.

2. QUANTUM ENTANGLEMENT MEASURE

As mentioned earlier, we use relative entropy to calculate the entanglement,E. This
measure is equal to the von Neumann reduced entropy when applied to pure states and
it is an upper bound on the distillable entanglement. It was introduced by Vedral and co-
workers [2, 5, 6] and, briefly, it can be described as follows: The entanglement of a composite
quantum state0 can be given by the minimal distance between it and a disentangled state,

E(0) = min
ρ∈d

D(0 ‖ ρ), (1)

whered is the set of all possible disentangled state. For distanceD, not necessarily a metric,
we can use the quantum relative entropy, given by [2, 5, 6]

D(0 ‖ ρ) ≡ S(0 ‖ ρ) = Tr(0 ln0 − 0 ln ρ), (2)

where Tr denotes the trace operation. Since we must search for the solution among all
possible disentangled states, we use the most general formula of a disentangled state. For a
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bipartite state, in which we concentrate our attention, the most general formula is [6]

ρ =
16∑

i=1

pi
(
ρ i

a ⊗ ρ i
b

)
, (3)

where the coefficientspi obey the normalization condition

16∑
i=1

pi = 1. (4)

Eachpi can be obtained using the parameterization [6]

pi =
[

sin(ψi−1)

15∏
j=i

cos(ψ j )

]2

, with ψ0 = π/2. (5)

Finally, ρ i
a andρ i

b are pure states of the form

ρ i
a =

[
cos2(θi ) cos(θi ) sin(θi ) exp(i ξi )

cos(θi ) sin(θi ) exp(−i ξi ) sin2(θi )

]
, (6)

ρ i
b =

[
cos2(ϕi ) cos(ϕi ) sin(ϕi ) exp(iφi )

cos(ϕi ) sin(ϕi ) exp(−iφi ) sin2(ϕi )

]
. (7)

For eachi , in Eq. (3), we have five variables:θi , ξi , ϕi , φi , andpi ; hence, the sum (3) has
80 variables. However, due to Eq. (4), only 15pi s are independent; therefore, there are 79
parameters that need to be varied in order to find a minimal value of Eq. (1).

3. GENETIC ALGORITHMS

A genetic algorithm is a computational technique based on the evolution of the species.
A possible solution to the problem is coded in a binary string, called a chromosome. An
initial population of chromosomes is created (randomly) and processed by natural operators:
natural selection, reproduction (crossover, exchange of parts of the binary string between
chromosomes, andmutation, inversion of one of the bits of the binary string; for both, the
position where the exchange and inversion takes place is chosen randomly), and evaluation
of the fitness (how good the solution is). A good understanding of genetic algorithms can be
obtained in Ref. [9]. With these rules, the good features of one solution can be transmitted to
the next generation of chromosomes and better solutions can be found. Natural selection and
reproduction are probabilistic stages and, hence, a genetic algorithm is a random process.
In this way, we cannot predict when the best solution will be found and, therefore, we set a
number of generations after which the program finishes.

4. SIMULATIONS

In our program we coded each angle in Eqs. (5)–(7) in a string of 10 bits, where the string
000 (hex) corresponds to the angle 0 rad and the string 3FF (hex) corresponds to the angle
2π rad. One chromosome is obtained by placing the 79 strings together, in sequence, and,
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therefore, it has 790 bits. With this arrangement, our space of solutions has 2790 elements,
making a brute-force method impossible, at least with the velocity of the present comput-
ers. The initial population has 150 chromosomes and the number of generations allowed
depends on the accuracy desired. Using a larger number of bits per string, or a large number
of generations, improves the precision, but the computational cost increases and the simu-
lation becomes slower. The natural selection is done by a tournament in which we choose
randomly three members of the population and the one that has the best fitness among them
goes to reproduction. This step is repeated 113 times (60% of the initial population). In the
reproduction we use a two-point crossover, with the crossover rate equal to 0.65, and muta-
tion, with the mutation rate equal to 0.008. Aiming to increase the velocity of convergence of
the algorithm, we employ elitism of the two best chromosomes; that is, they are guaranteed
into the next generation. Finally, the fitness function is the proper quantum relative entropy,
Eq. (2), since it is always positive. We tested our program using the Werner states [6, 7]

W = F |ψ−〉〈ψ−| + 1− F

3
(|ψ+〉〈ψ+| + |φ−〉〈φ−| + |φ+〉〈φ+|), (8)

W = F


0 0 0 0
0 0.5 −0.5 0
0 −0.5 0.5 0
0 0 0 0

+ 1− F

3


1 0 0 0
0 0.5 0.5 0
0 0.5 0.5 0
0 0 0 1

 , (9)

where the states on the right side of Eq. (8) are the states of Bell’s base [4] andF , belonging
to the interval [0.25, 1], is called fidelity. In Fig. 1 we can see the evolution of the solution
of the entanglement for two simulations: The upper curve is for a Werner state withF = 1,

FIG. 1. Evolution of the solution for a maximally entangled state (F = 1) and a disentangled state (F = 0.5),
wheren is the number of generations.
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FIG. 2. Entanglement of Werner states (E), using relative entropy, versus fidelity (F) for 500 generations.

which is a maximally entangled state, and the lower curve is for a Werner state withF = 0.5,
which is a disentangled state. As already mentioned, due to the stochastic nature of a genetic
algorithm, we cannot predict in which generation the best solution will be found. This can
be seen by comparing both curves in Fig. 1. In Fig. 2, the entanglement,E, for Werner
states withF varying in the interval [0.5, 1], using 60 points and 500 generations, is shown.
Its smoothness can be improved simply by increasing the number of generations used, as
shown in Fig. 3, for 1200 generations, or by taking the average curve over several simu-
lations, as shown in Fig. 4, in which we took the average curve over the simulations with
500, 700, and 1200 generations. The entanglement of Werner states using relative entropy
is a well-known curve and the values shown in Figs. 3 and 4 are in good agreement with the
curve presented in Ref. [6]. Let us consider now the family of states introduced in Ref. [10],

0 = q|91〉〈91| + (1− q)|92〉〈92|, (10)

|91〉 = a|00〉 +
√

1− a2|11〉, (11)

|92〉 = a|10〉 +
√

1− a2|01〉, (12)

where 0< q, a < 1 and the states|00〉, |01〉, |10〉, and|11〉 form the standard basis. The
density matrix, Eq. (10), in the standard basis is

0 =


qa2 0 0 qa

√
1− a2

0 (1− q)(1− a2) (1− q)a
√

1− a2 0
0 (1− q)a

√
1− a2 (1− q)a2 0

qa
√

1− a2 0 0 q(1− a2)

 . (13)
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FIG. 3. Entanglement of Werner states (E), using relative entropy, versus fidelity (F) for 1200 generations.

In Fig. 5, we show the entanglement of formation (continuous line),EF , and the entan-
glement based on the relative entropy (dotted line),E, calculated by our genetic algorithm.
In this simulation we useda = 0.75 andq varying in the interval (0, 1). As we can see in
Fig. 5, the entanglement of formation and the relative entropy have the same shape but, as

FIG. 4. Average curve (500, 700, and 1200 generations) for the entanglement of Werner states (E), using
relative entropy, versus fidelity (F).
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FIG. 5. Entanglement of formation (continuous line) and minimal relative entropy (dotted line) for the state
in Eq. (13), witha = 0.75.

expected, the former is larger than the latter. Again, the smoothness of the curve shown in
Fig. 5 can be improved by increasing the number of generations (3000) or the size of the
population of chromosomes (75), but the price is a longer time needed for simulation.

5. ADVANTAGES AND DISADVANTAGES OF USING GENETIC ALGORITHMS

The implementation of a genetic algorithm is quite easy; in fact, with a smart encoding
of the density matrix parameters of the disentangled state in a binary string, just a few lines
of program can be implemented to solve the problem. The main drawback of a genetic
algorithm is its velocity. As mentioned earlier, a genetic algorithm is a random process and
we never know when the best solution will be achieved. We can work with the crossover
rate, the type of crossover (one point or two points), and the population size, among other
parameter, in order to increase the velocity of convergence of a genetic algorithm. We can
also adopt some strategies to improve its performance. For example, the relative entropy can
assume values much larger than 1, the maximum value of the entanglement. We can force
the initial population to have a minimal number of chromosomes with a relative entropy
(related to the state whose entanglement we wish to measure) at least not much larger than
1. We can also adopt the entanglement of formation of the state to be measured, which
can be calculated analytically [11], as a stop criterion, since the relative entropy cannot be
larger than that of the entanglement of formation. For bipartite states, the gradient method
implemented in Ref. [6] is faster than our genetic algorithm. When we consider entangled
systems with more than two subsystems (all of them two-level systems), called multiqubit
systems, the number of parameters in the formula of a general disentangled state increases
[6] and the problem may have local minima (this is not known yet). If they really exist, we
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believe that in multiqubit systems a genetic algorithm is a good choice because it is robust
against local minima. Furthermore, if a criterion of separability for the multiqubit system
considered exists, a formulation for the most general disentangled state, for that system,
is not necessary since we can discard the entangled states eventually created during the
search for the solution. At last, a computer program to calculate the entanglement based
on the relative entropy for multiqubit systems is almost equal to the computer program
used to calculate the entanglement for bipartite states. The difference is the encoding of a
disentangled state of the multiqubit system in a chromosome. This will be longer, since there
are more state parameters to be encoded. As quoted before, the longer the chromosome, the
slower the computer program runs (larger matrices are handled).

6. CONCLUSIONS

We explained, briefly, the quantum entanglement measure based on relative entropy.
Following that, we used a technique of computational intelligence, named genetic algorithm,
as an alternative method for searching the disentangled state that is at the minimal distance,
in the sense explained in the text, from the state whose entanglement we want to measure.
Our computer program showed results that agree with results presented in the literature and
it can be used as a tool for numerical studies of quantum communication systems, based
on quantum entanglement, or to find properties of the quantum entanglement. The major
advantage of using a genetic algorithm is its easy implementation and its ability to find the
best solution, even when there are local minima. The major disadvantage is its low velocity.
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